

Experimental Evaluation of a Process Benchmarking Tool in a Green Business Process Management Context

Wirtschaftsinformatik 2013

M. Sc. Matthias Gräuler matthias.graeuler@uni-osnabrueck.de
Prof. Dr. Frank Teuteberg

frank.teuteberg@uni-osnabrueck.de

www.uwi.uni-osnabrueck.de

Motivation

Was ist Prozessbenchmarking und warum ist es wichtig?

- Den Status Quo der Prozesse einer Organisation evaluieren durch Vergleich mit...
 - Prozessen anderer Organisationen oder
 - Referenzprozessen

...um Potenziale für die Verbesserung der Prozesseffizienz aufzudecken.

Motivation

- Probleme bei Prozessbenchmarking-Vorhaben:
 - Syntaktische Inkompatibilität zwischen verschiedenen Modellierungssprachen
 - Unterschiedliche Terminologie für die selbe Anwendungsdomäne
 - Unterschiedliche Grade der Abstraktion

Motivation

"Ways must be found for doing [benchmarking] faster, more effectively and economically, without sacrificing rigour or integrity of the approach"

-Drew, 1997

- Lösungsansatz:Semantisches Geschäftsprozessmanagement
 - Entwicklung eines gemeinsamen terminologischen und dömänenspezifischen Bezugspunkts
 - Annotation von Aktivitäten mit ihren Umwelteffekten
 - Softwareunterstützung durch SEMAT (SEMantic ATtribution)

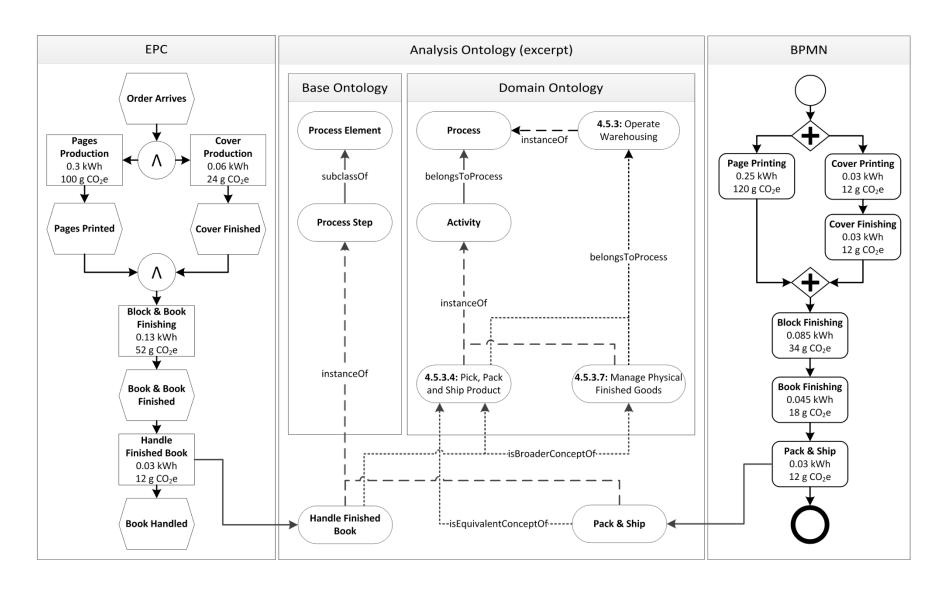
Forschungsfragen

- 1. Was ist der gegenwärtige Status Quo von semantischen und grünem Geschäftsprozessmanagement?
- 2. Welche Metriken k\u00f6nnen bei gr\u00fcnem Gesch\u00e4ftsprozessmanagement eingesetzt werden?
- 3. Kann die Software SEMAT bei grünen Geschäftsprozessmanagement-Initiativen unterstützen?

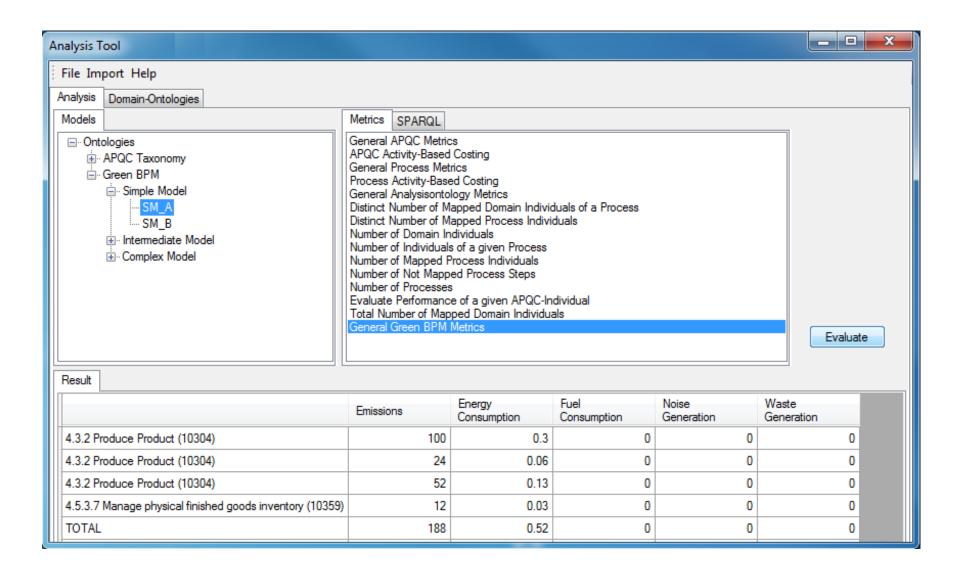
Verwandte Forschungsarbeiten

- Suchbereich
 - Suche in den Top-20 Journals nach dem AIS-Ranking
 - A-gerankte Konferenzen nach dem ERA-Ranking (ICIS, ECIS, AMCIS, ACIS, PACIS) und zusätzlich WI
- Suchbegriffe
 - Benchmarking, Business, Green, Management, Modeling,
 Ontology, Process, Semantic, Sustainable, Sustainability
 - in verschiedenen Kombinationen
 - auf Deutsch & Englisch
- Ergebnis:
 - Nach Rückwärtssuche: 32 relevante Beiträge
 - Bewertung jedes Beitrages in sechs Kategorien

Identifizierte Metriken

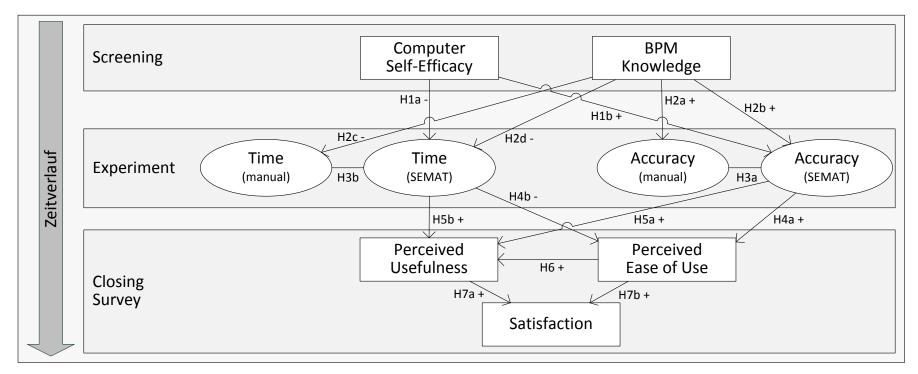

Dim	Metric / Explanation / Example	Reference
Env	Air Quality indicated by e.g. Air Quality Index	(Hoesch-Klohe & Ghose 2010)
Env	<u>Congestion</u> leads to unnecessary consumption of resources	(Alemayehu & Vom Brocke 2011)
Env	Emissions of greenhouse gases, ozone depleting substances or other emissions in e.g. CO ₂ -equivalents	(Alemayehu & Vom Brocke 2011; Ghose et al. 2009; Hoesch-Klohe et al. 2010; Loos et al. 2011; Nowak et al. 2011; Recker et al. 2011; Seidel et al. 2011; Hoesch-Klohe & Ghose 2010; GRI 2011)
Env	Energy Efficiency/Consumption in e.g. kWh/unit	(Ghose et al. 2009; Houy et al. 2011; Kundisch et al. 2010; Loos et al. 2011; Nowak et al. 2011; Recker et al. 2011; Seidel et al. 2011; GRI 2011)
Env	<u>Environmental Performance</u> : Qualitative measure, representing a variety of measures; performance could range from A to D	(Hoesch-Klohe & Ghose 2010)
Env	Fuel Efficiency/Consumption in e.g. km/100 liter fuel	(Alemayehu & Vom Brocke 2011; Houy et al. 2011; Recker et al. 2011)
Env	Odour emission in e.g. olf or decipol	(De Haes 1996)
Env	Paper Consumption in e.g. sheets/employee	(Loos et al. 2011; Recker et al. 2011; Seidel et al. 2011)
Env	Radiation in e.g. sievert	(Jolliet et al. 2003; de Haes 1996)
Env	Waste Generation in e.g. kg/unit	(Alemayehu & Vom Brocke 2011; Recker et al. 2011; Hoesch-Klohe & Ghose 2010; GRI 2011)
Env	Water Consumption in e.g. liter/unit	(Nowak et al. 2011; Hoesch-Klohe & Ghose 2010; GRI 2011)
Env	Water Discharge in liters	(GRI 2011)
Env	Noise Generation measureable in e.g. decibel	(Alemayehu & Vom Brocke 2011; de Haes 1996)
Soc	Probability of accidents/casualties	(De Haes 1996)
Soc	<u>Training and Development</u> required for new employees	(Alemayehu & Vom Brocke 2011)
Soc	Workforce size indicates the number of employees needed	(GRI 2011)

Beispiel des Ansatzes


Beispiel des Ansatzes

- 1. Domänenontologie auswählen oder erstellen
- 2. Basisontologie auswählen oder erstellen
- 3. Sammlung der Prozessleistung
- Prozesselemente auf Instanzen der Domänenontologie mappen
- Import der Prozessmodelle und Transformation in eine Instanzontologie der Basisontologie; Zusammenführen der drei Ontologien in eine Analyseontologie
- 6. Abfrage der Analyseontologie mit SEMAT

Beispiel des Ansatzes


Evaluationskonzept

- Vergleich von
 - Manuellem Benchmarking mit
 - Benchmarking unterstützt mit SEMAT
- Beschränkung der Evaluation auf Abfrage der Daten aus folgenden Gründen
 - Die Basis- und Domänenontologie k\u00f6nnen i.d.R. wiederverwendet werden
 - Die Erfassung der Prozesskennzahlen fällt nur an, wenn sich die Prozessperformance ändert und muss auch beim manuellen Benchmarking durchgeführt werden
 - Das Mapping der Konstrukte fällt nur ein mal pro Prozess an
 - Import der CSV-Dateien und das Erstellen der Instanzontologie ist zu vernachlässigen

Forschungsmodell

- Drei Phasen
- Messung mittels
 - 7-Punkte Likert-Skalen (Rechtecke)
 - Zeitnahme (Oval)
 - Zählen von Fehlern (Oval)
- Aufteilung der Probanden in zwei Gruppen: manuell und SEMAT

Hypothesen

H-Nr	Construct 1	Construct 2	Relationship	Group
H1a	Computer Self-Efficacy	Accuracy	+	SEMAT
H1b	Computer Self-Efficacy	Time	-	SEMAT
H2a	BPM Knowledge	Accuracy	+	Manual
H2b	BPM Knowledge	Accuracy	+	SEMAT
H2c	BPM Knowledge	Time	-	Manual
H2d	BPM Knowledge	Time	-	SEMAT
НЗа	Accuracy (SEMAT)	Accuracy (manual)	>	
H3b	Time (SEMAT)	Time (manual)	<	
H4a	Accuracy	Perc. EoU	+	SEMAT
H4b	Time	Perc. EoU	-	SEMAT
H5a	Accuracy	Perc. Usefulness	+	SEMAT
H5b	Time	Perc. Usefulness	-	SEMAT
Н6	Perc. EoU	Perc. Usefulness	+	SEMAT
Н7а	Perc. Usefulness	Satisfaction	+	SEMAT
H7b	Perc. EoU	Satisfaction	+	SEMAT

- Stichprobengröße: n = 24
 - 18 Bachelor-/Masterstudenten
 - 6 Doktoranden

- Gruppenzuteilung
 - 13 Benchmarking mit SEMAT
 - 11 manuelles Benchmarking
- Analyse mittels IBM SPSS 20

Hypothesen

H-Nr	Construct 1	Construct 2	Relationship	Group	Findings
H1a	Computer Self-Efficacy	Accuracy	+	SEMAT	×
H1b	Computer Self-Efficacy	Time	-	SEMAT	×
H2a	BPM Knowledge	Accuracy	+	Manual	✓
H2b	BPM Knowledge	Accuracy	+	SEMAT	×
H2c	BPM Knowledge	Time	-	Manual	×
H2d	BPM Knowledge	Time	-	SEMAT	×
НЗа	Accuracy (SEMAT)	Accuracy (manual)	>		×
H3b	Time (SEMAT)	Time (manual)	<		×
H4a	Accuracy	Perc. EoU	+	SEMAT	×
H4b	Time	Perc. EoU	-	SEMAT	×
Н5а	Accuracy	Perc. Usefulness	+	SEMAT	×
H5b	Time	Perc. Usefulness	-	SEMAT	×
Н6	Perc. EoU	Perc. Usefulness	+	SEMAT	✓
Н7а	Perc. Usefulness	Satisfaction	+	SEMAT	✓
H7b	Perc. EoU	Satisfaction	+	SEMAT	✓

	Group	Time Task 1	Time Task 2	Time Task 3	Time Total	Accuracy Task 1	Accuracy Task 2	Accuracy Task 3	Accuracy Total
Mean	Manual	396.400	209.930	675.408	1255.232	5.182	8.455	18.455	32.091
	SEMAT	309.454	177.132	606.720	1076.300	5.846	8.923	19.615	34.385
SD.	Manual	119.604	42.641	121.712	221.511	1.834	1.809	4.083	6.156
SD	SEMAT	130.623	61.341	137.136	264.322	0.555	0.277	3.841	4.407

H-Nr	Construct 1	Construct 2	Relationship	Findings
НЗа	Accuracy (SEMAT)	Accuracy (manual)	>	×
H3b	Time (SEMAT)	Time (manual)	<	×

Construct		Perc. EoU
Group	SEMAT	
Time Total	Corr.	159
Time Iotal	Sign.	.528
Accuracy Total	Corr.	.358
	Sign.	.130

H-Nr	Construct 1	Construct 2	Relationship	Group	Findings
H4a	Accuracy	Perc. EoU	+	SEMAT	×
H4b	Time	Perc. EoU	-	SEMAT	×

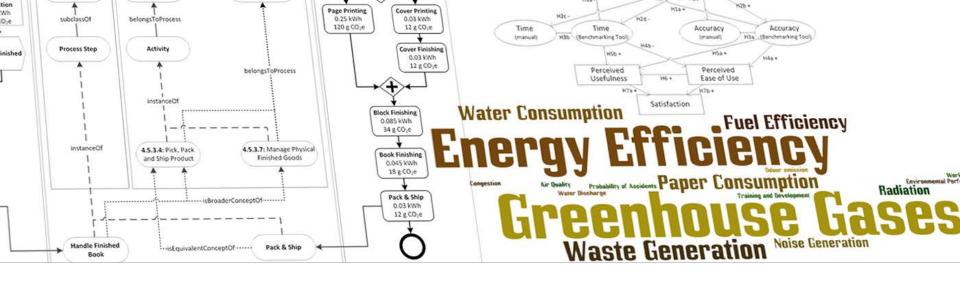
Construct		Perc. Usef.
Group	SEMAT	
Time Total	Corr.	230
Time Total	Sign.	.365
Accuracy Total	Corr.	.092
	Sign.	.703

H-Nr	Construct 1	Construct 2	Relationship	Group	Findings
H5a	Accuracy	Perc. Usefulness	+	SEMAT	×
H5b	Time	Perc. Usefulness	-	SEMAT	×

Zusammenfassung

- Green BPM-Metriken sind vielfältig und dürfen nicht von einander getrennt betrachtet werden
- Illustration des in SEMAT verfolgten Ansatzes
- Evaluation von SEMAT
 - Nur wenige Hypothesen konnten angenommen werden
 - Wahrscheinlich oft Korrektheit der Hypothesen, jedoch statistisch nicht signifikant
 - → SEMAT unterstützt bei Benchmarking-Initiativen, jedoch fehlt der statistische Nachweis

Limitationen



- Betreffend die Stichprobe
 - Größere Stichprobe wäre wünschenswert gewesen
 - GPM Experten wären bessere Zielgruppe
- Größeres Spektrum an Aufgabenkomplexität
- Vergleich von SEMAT mit nur einem Benchmarkingansatz

Zukünftige Arbeit

- Erstellung einer m\u00e4chtigen Basisontologie f\u00fcr eine Vielzahl von Modellierungssprachen
- Automatisierte Umrechnung von Metriken
- Direkter Vergleich zweier/mehrerer Prozesse
 - Anzeigen des Deltas
 - Entscheidungsvorschläge aufgrund einer Gewichtung von Metriken
- Wiederholung der Überprüfung
 - mit anderen Benchmarkingansätzen
 - größere Stichprobe
 - mit GPM Experten als Probanden

Vielen Dank für Ihre Aufmerksamkeit!

www.uwi.uni-osnabrueck.de

M. Sc. Matthias Gräuler

matthias.graeuler@uni-osnabrueck.de

Prof. Dr. Frank Teuteberg

frank.teuteberg@ uni-osnabrueck.de

Diese Arbeit ist im Rahmen des Projekts "IT-for-Green: Umwelt-, Energie- und Ressourcenmanagement mit BUIS 2.0" entstanden. Das Projekt wird mit Mitteln des Europäischen Fonds für regionale Entwicklung gefördert (Fördernummer W/A III 80119242).

www.IT-for-Green.eu www.ertemis.eu

Literaturangaben

Alemayehu, W., Vom Brocke, J.: Sustainability Performance Measurement – The Case of Ethiopian Airlines. In: Lecture Notes in Business Information Processing. 66, 467–478 (2011)

Association for Information Systems: MIS Journal Rankings

De Haes, U.: Towards a Methodology for Life Cycle Impact Assessment. SETAC-Europe, Brussels (1996)

Drew, S.A.W.: From Knowledge to Action: The Impact of Benchmarking on Organizational Performance. In: Long Range Planning. 30, 427–441 (1997)

Ghose, A., Hoesch-Klohe, K., Hinsche, L., Le, L.-S.: Green Business Process Management: A Research Agenda. In: Australasian Journal of Information Systems. 16, 103–117 (2009)

GRI: Sustainability Reporting Guidelines 3.1. Global Reporting Initiative, (2011)

Hoesch-Klohe, K., Ghose, A., Lê, L.-S.: Towards Green Business Process Management. In: IEEE International Conference on Services Computing. pp. 386–393. Miami (2010)

Hoesch-Klohe, K., Ghose, A.: Carbon-Aware Business Process Design in Abnoba. In: Lecture Notes in Computer Science. 6470, 551–556 (2010)

Houy, C., Reiter, M., Fettke, P., Loos, P., Geb, D.: Towards Green BPM – Sustainability and Resource Efficiency through Business Process Management. In: Lecture Notes in Business Information Processing. 66, 501–510 (2011)

Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R.: IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. In: The International Journal of Life Cycle Assessment. 8, 324–330 (2003)

Kundisch, D., Herrmann, P., Meier, C.: Sustainable Process Management - Status Quo and Perspectives. In: Lecture Notes in Business Information Processing. 46, 94–106 (2010)

Loos, P., Nebel, W., Marx Gómez, J., Hasan, H., Watson, R.T., Vom Brocke, J., Seidel, S., Recker, J.: Green IT: A Matter of Business and Information Systems Engineering? In: Business & Information Systems Engineering. 3, 245–252 (2011)

Nowak, A., Leymann, F., Mietzner, R.: Towards Green Business Process Reengineering. In: Lecture Notes in Computer Science. 6568, 187–192 (2011)

Recker, J., Rosemann, M., Gohar, E.R.: Measuring the Carbon Footprint of Business Processes. In: Lecture Notes in Business Information Processing. 66, 511–520 (2011)

Seidel, S., Vom Brocke, J., Recker, J.: Call for Action: Investigating the Role of Business Process Management in Green IS. In: Sprouts. 11, 1–7 (2011)

Deskriptivstatistik & Reliabilitätskoeffizienten

	Group	Items	Mean	SD	Alpha	Comp. Rel.	AVE
Comp. SE	Manual	4	6.205	.706		.895	.682
Comp. 3L	SEMAT		5.846	.681	.027	.693	.002
BPM Knowledge	Manual	4	4.522	1.186	.872	.912	.723
brivi kilowieuge	SEMAT		4.885	1.368	.072		
Perc. Usef.	Manual	5	4.900	.939	.832	.885	.609
reic. Osei.	SEMAT		5.508	.755		.032	.032
Perc. EoU	Manual	7	5.571	.774	.872	.909	.592
reic. Loo	SEMAT	,	5.956	.770		.072	.909
Satisfaction	Manual	4	4.975	1.204	.895	.895 .928	.763
Satisfaction	SEMAT	4	5.558	.693		.920	.703