Managing Acquired Knowledge from Different Network Partners: The Role of Knowledge Management Systems

Bernhard Moos
University of Bamberg, Bamberg, Germany
bernhard.moos@uni-bamberg.de

Abstract. One key asset of a firm is its knowledge stock comprising different knowledge domains (e.g., market, technological knowledge, etc.). This stock results from firm internal and/or external resources such as exchange partners (e.g. customers and R&D partners). The paper focuses on external partners and explores for which knowledge domain the usage of knowledge management systems (KMS) regarding the management of acquired knowledge from them is beneficial or detrimental to the organization. Further, the importance of each type of partner for knowledge creation is demonstrated. Using data from 154 firms, the results show that (1) each type of partner contributes to most of the knowledge domains, (2) KMS facilitate the management of the knowledge stock of a firm excluding the domain of product knowledge, and (3) the usage of KMS for managing acquired knowledge has two faces depending on the type of knowledge and on the type of exchange partner.

Keywords: knowledge management systems, exchange partners, moderation analysis, knowledge creation, networks

1 Introduction

Knowledge has become a strategic resource for firms [2]. This study focuses on external partners (e.g. customers) as sources of knowledge and explores their influence on the creation of different types of knowledge (e.g. market knowledge) by using a social capital (SC) lens. SC is defined “as the sum of the actual and potential resources embedded within, available through and derived from the network of relationships possessed by an individual or social unit” [54]. Knowledge is one of these resources that can be acquired via networks. Thus, SC at different levels of analysis has been found to affect knowledge acquisition and exploitation [70], knowledge transfer [64], as well as knowledge creation [52]. Hence, the different exchange partners can be seen as a “pool of knowledge” and SC allows a firm to access this resource pool, thereby facilitating the exchange and combination of knowledge [52].

Merely maintaining relationships to external exchange partners is insufficient unless the acquired knowledge is internalized [34]. To employ knowledge as a differentiating factor for competitive advantage, it is necessary to keep it up to date by reconfiguring it better, faster and more efficiently than direct competitors [3]. This task is
facilitated by knowledge management and especially by knowledge management systems (KMS). Hence, KMS as a "vehicle for the creation and transfer of knowledge" [64] have become a central resource of a firm [48]. Besides managing internal knowledge, KMS are of particular importance to capture knowledge from different partners covering multiple domains [5], [48] and to manage this external knowledge effectively [34].

Focusing on knowledge, researchers have identified various types of exchange partners [e.g., 45] and analyzed their influence on innovation [19]. Other studies investigated the effect of different knowledge domains [e.g., 51] or KMS [e.g., 43] on firm performance. Nevertheless, the question of how KMS affect the management of acquired knowledge, spanning different domains from various exchange partners, has not been analyzed so far. In particular, it is unclear how different types of exchange partners contribute to different types of knowledge and what the role KMS play in this respect. Accordingly, the following research question is formulated:

What is the differential impact of using KMS for managing different types of acquired knowledge from various types of exchange partners?

This research closes this gap by using an explorative data analysis connecting both aspects "external exchange partners" and "internal KMS usage for managing acquired knowledge". Further, answering the research question is of great practical relevance. First, knowing which type of exchange partner affects which type of knowledge is essential for effective investments into a firm’s network from a knowledge management perspective. Second, knowing for which combination of knowledge domain and type of exchange partner KMS are especially effective is of great importance for the dedicated usage of such systems. Thus, my research extends previous work by investigating the role of KMS usage for managing acquired knowledge aiming at the creation, respectively enhancement of the internal knowledge stock of a firm. Thereby, the importance of each external exchange partner is scrutinized.

The paper starts with the development of the research model. Then the methodology is introduced followed by a presentation of the results. Finally, conclusions and limitations are discussed.

2 Research Model

The research model explores the impact of KMS usage by the focal firm for managing acquired knowledge comprising different domains from various types of exchange partners. Thereby, the influence of each exchange partner in terms of SC between the focal firm and the corresponding type of partner on the knowledge stock of a firm is explored. In the following sections the set of exchange partners, the set of knowledge types, the relations between them, and the influence of the usage of KMS are introduced. I do not formulate hypotheses for the effect of the usage of KMS on each combination of exchange partner and knowledge type (5 types of exchange partners x 5 types of knowledge = 25 hypotheses) nor for the influence of each exchange partner on each knowledge domain. Rather I stick to a more general rationale by describing why different exchange partners positively influence the knowledge stock and by
illustrating the positive role of KMS usage for managing the acquired knowledge from them. Hence, the model as visualized in Fig. 1 serves as a baseline model which allows exploring the differential relationships between the different types of exchange partner and knowledge domains as well as the role of KMS usage for managing acquired knowledge for each combination of partner and domain.

Fig. 1. Research Model

2.1 Knowledge Stock

As described in Moos et al. [53] the knowledge stock of a firm represents the level of knowledge assets of an organization [33] and comprises different domains. Literature on inter-organizational cooperation emphasizes many categories of knowledge predominantly highlighting market and technological knowledge [e.g., 51]. Market knowledge is externally oriented and comprises knowledge about an organization’s external environment in terms of actual and potential future markets a firm is engaged in. It is also knowledge about industry information [67] and different partners [55]. Technological knowledge refers mostly to the technological competence of a firm [41] and to the ability to recognize new technologies [5]. Examples of this domain are IT knowledge [60] and state-of-the-art technical practices [50]. Beside these two types, knowledge about managing and designing a firm’s internal processes (process knowledge) [8] as well as knowledge about the organizational form and functions or about strategic and sourcing topics (organizational knowledge) [37] might be important. Before the survey started, 18 case studies with CEOs or business unit managers of manufacturing firms ranked as very innovative in their industries according to sales volume of new products in relation to total sales were carried out. These studies demonstrated the importance of knowledge about how well the product landscape is known by a firm’s employees which constitutes the last domain (product knowledge).

2.2 Exchange Partners and the Role of Social Capital (SC)

Several types of exchange partners were identified based on literature on inter-organizational cooperation and especially on knowledge transfer. The set of partners com-
prises: Customers and suppliers [e.g., 14], R&D partners, communities/professional organizations [46], and the friendship communities [e.g., 38] of the survey respondent in terms of private contacts. R&D partners cover R&D service providers (e.g., engineering companies) [e.g., 45] and public research institutions (e.g., universities) [e.g., 14]. Communities/professional organizations comprise industry associations and related working groups including firms within [19] and without the firm group.

As argued in Moos et al. [53] a firm will raise its knowledge stock by maintaining active relationships to these exchange partners and interacting with them. Thus, each exchange partner functions as an external knowledge source. Since I focus on these relationships, SC theory is applied by investigating the contribution of SC to each of the exchange partners on knowledge creation [54]. SC theory has been chosen because SC “directly affects the combine-and-exchange process and provides relatively easy access to network resources” [52] and because it “inheres in the structure of relations between actors and among actors” [18], and thus resides in relationships. According to Nahapiet and Ghoshal [54] SC consists of three dimensions. As already discussed in Moos et al. [53] each dimension influences the formation of the organizational knowledge stock for the following reasons.

The **structural dimension** focuses on ties between actors and their strength characterized by frequency of interaction. Strong ties enhance knowledge and information flow [31]. Further, for raising different domains of knowledge, strong ties to diverse types of exchange partners are important [10]. Hence, the structural dimension increases the access to knowledge [71] by providing communication channels for exchanging knowledge [51]. The **relational dimension** concentrates on the nature of ties in terms of mutual respect and trust based upon the development of relationships over time [30] and enhances the efficiency and effectiveness of knowledge exchange [47]. First, trusted relationships improve the willingness to exchange knowledge because both exchange partners engaged in the relationship trust in each other to handle the exchanged knowledge carefully [51]. Second, the relational dimension guides actions through the creation of mental maps [e.g., 9]. These maps simplify the knowledge exchange process and further foster the subsequent application of the exchanged knowledge in terms of reducing time for verification [51]. Finally, the **cognitive dimension** deals with shared vocabulary, shared narratives and interpretations [32] and increases the knowledge exchange by creating a greater understanding through common languages and symbols [25] and by a common frame of reference [56] in which knowledge can be integrated [32]. Additionally, the reach and richness of exchanged knowledge increases by establishing perspective-sharing and sense-making [62].

After all, each dimension of SC fosters the knowledge exchange between a focal firm and its various partners. Consequently, each partner positively impacts the creation of the focal firm’s knowledge stock since the firm acquires knowledge from.

2.3 The Moderating Role of KMS Usage for Managing Acquired Knowledge

Besides having different types of partners as knowledge sources it is necessary to maintain the consistency and integrity of the knowledge stock [65] to ensure that the knowledge is state-of-the-art at any time [5]. A firm “requires a well-planned system
of knowledge management that enables the firm to excel in technological, market and administrative knowledge creation” [59] Thus, the usage of KMS is of central importance. Adopting Pavlou and El Sawy’s [57] understanding, KMS can be defined as an “IT-based system[s] developed to support and enhance the organizational processes of knowledge creation, storage/retrieval, transfer, and application” [2].

A KMS facilitates the creation of knowledge directories by storing useful knowledge [57] acquired from multiple sources such as external exchange partners, and allows updating or even deleting the knowledge in an effective way [5]. KMS further offers effective mechanisms for information retrieval which makes it easier for knowledge consumers within a firm to identify and find the knowledge of interest [5]. Thereby, KMS supports the connection of different pieces of knowledge by, e.g., checking newly acquired knowledge against already existing, and hence contributes to a more comprehensive understanding of acquired knowledge. Also KMS provides a channel for collaboration and communication between knowledge producers and seekers in a firm [57] and thus support the knowledge distribution [5] of newly acquired knowledge. The application of knowledge is supported by the usage of KMS in terms of simplifying and speeding up the access to knowledge [27]. Altogether, the use of KMS has a positive effect for managing acquired knowledge by building and administering the knowledge stock, including structuring newly acquired knowledge.

3 **Methodology**

3.1 **Data Collection**

The data stems from a survey among the 2,500 largest firms of the German manufacturing industry (Standard-Industrial-Classification codes 3011-3999 and revenues of 2007). This industry was chosen because it consists of a large degree of high-tech firms which are characterized by a huge stock of knowledge and by using KMS. Thus, this industry is appropriate for detecting knowledge acquisition from their environment and for effects through the usage of KMS. To avoid aggregation problems on a firm level I focused on the most important product division. The previously mentioned case studies have shown that “most important” is commonly understood as “largest” rather than “most successful” division. These studies indicated that the manager in charge of this division is totally familiar with the relationship to each exchange partner because s/he is responsible for the daily business and therefore stays in contact with the partners of the division. Further, this person has the necessary overview to evaluate the level of existing knowledge for each domain. According to the preference of the identified person the questionnaires were sent by mail (1575 times), fax (4 times), or email (581 times), respectively. Four weeks after the initial dispatch a reminder was delivered if the person had not answered. After another two weeks the person has been called a second time and a second reminder was sent out.

154 of 229 received questionnaires could be used for analysis because they showed no missing data regarding the measurement items. If a participant did not maintain a relationship to a specific type of partner s/he skipped this section of the survey, e.g.,
most of the respondents stated to have no friendship community with which they share business related topics. So not every participant has a relationship to all types of partners which explains the difference between used and received questionnaires.

Non-response bias was examined in two ways. First, early and late respondents were compared. Early respondent corresponds to respondents which answered after the initial dispatch, whereas late respondents are respondents which replied after having received the reminder questionnaire and/or call. The assumption of this method is that the latter ones share similarities with those organizations which have not participated in the survey [4]. Second, I compared the demographic data at organizational level in terms of revenue and number of employees of the respondents with those who were in the original sample but had not answered. In both cases the Mann-Whitney test as a non-parametric test for group comparisons was applied, showing no differences between the corresponding groups, indicating the absence of non-response bias.

3.2 Measurement

After reviewing literature on both SC theory and knowledge transfer a project team of four researchers developed the questionnaire by extracting measurement instruments from 97 journal articles. This resulted in a reflective measurement model consisting of 3 to 4 items for each construct. Each dimension of SC was measured by three items which together indicates the overall SC related to each exchange partner. Table 1 lists all the items and gives the references. The questionnaire was pre-tested independently with eight firms to ensure the understandability of the items and the comprehensiveness of the constructs. Furthermore, we applied the card sorting approach with a couple of managers and research colleagues for the five knowledge domains to gain a higher convergent validity. Based on the feedback, two items were modified regarding the wording and one item was deleted. Finally, six more pre-tests have been conducted resulting in no further changes.

As control variables I included firm size (log of number of employees). Further, environmental turbulence was measured by three items from De Luca and Atuahene-Gima [20] and Jaworski and Kohli [39] regarding the rapidness and predictability of technological changes and customer needs. Finally, the strategy type of the organization was captured by using an item from Droge et al. [22], with a scale ranging from “focusing on the optimization of processes” to “focusing on innovation leadership”.

3.3 Analysis

For analyzing the data and exploring the influence of the usage of KMS for managing acquired knowledge for each combination of knowledge type and type of exchange partner, the product-term-approach was used by running hierarchical multiple linear regressions which is the most preferred method for examining moderation effects [24]. Social capital to an exchange partner represents the independent, respectively the predictor variable, the usage of KMS represents the moderator and the product of these two represents the interaction term indicating the moderation effect whereas a type of knowledge denotes the dependent variable (cf. equation 1).
As five different types of knowledge and exchange partners are distinguished, 25 multiple linear regressions were executed. In a first step all items according to a latent variable were aggregated by calculating the mean. Regarding the social capital dimensions the mean was calculated over all items of the three dimensions to each exchange partner, which results in one value indicating the quality of the corresponding relationship. Since the independent and the moderator variable are measured on the same scale these two variables were standardized [15] to avoid computational errors because the correlation between these variables and the interaction term decreases and thus the problem of multicolinearity among them is reduced [24]. Furthermore, it allows an easier interpretation of the results [15] especially for the effect of the independent and moderator variable [24]. Finally, the interaction term was calculated as the product of the standardized independent and moderator variable [24].

In the first step of the hierarchical regression analyses only the control variables are included ($x_1 = \log$ of numbers of employees, $x_2 = \text{environmental turbulence}$, $x_3 = \text{strategy type}$). Then the predictor x_4 (standardized social capital to an exchange partner), the moderator x_5 (standardized usage of KMS) and the interaction term x_6 ($x_4 * x_5$) are included stepwise. The corresponding regression coefficients are represented by b to g. To ensure maximum comparability of the coefficients over the 25 regressions each was calculated on the same sample of 154 questionnaires.

$$\text{Type of knowledge} = a + b * x_1 + c * x_2 + d * x_3 + e * x_4 + f * x_5 + g * x_6 \quad (1)$$

4 Results

4.1 Validating the Measurement Model

For each latent variable the items were aggregated to a single score by calculating the mean. To underline the quality of the measurement model, indicator reliability was checked by applying confirmatory factor analysis (CFA) (principal component analysis). Since the items were derived from literature CFA was applied instead of an explanatory factor analysis for each dimension of social capital to each exchange partner, the types of knowledge, and for the usage of KMS. This is done because low reliability of the independent and/or the moderator variable decreases the reliability of the interaction term and thereby the power of the moderation test [24], 63 of the 67 items showed loadings higher than .7 [36]. Four missed this threshold but have loadings above .6 [7] indicating sufficient indicator reliability (cf. Table 1).

4.2 Role of KMS Usage and Importance of Exchange Partner

Table 2 presents the results of the final step of the linear regressions by listing the unstandardized regression coefficients [24] of the relationships between the type of exchange partner and the knowledge domains (e), between the usage of KMS and the knowledge domains (f), and the coefficients of the moderating effect (g) in terms of the usage of KMS for managing acquired knowledge (compare equation 1). The re-
Because the focus of this study is on exploring the effect of KMS usage for managing firm size on organizational and technological knowledge. All other control variables do not show a clear pattern regarding the different knowledge domains.

Table 1. Construct Specifications and Item Loadings in Brackets

<table>
<thead>
<tr>
<th>Construct</th>
<th>Source</th>
<th>Items</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Knowledge</td>
<td>[6, 20]</td>
<td>“Our product division’s knowledge of competitor strategies is very thorough.” (.804)</td>
<td></td>
</tr>
<tr>
<td>Technological Knowledge</td>
<td>[26, 41, 50]</td>
<td>“Our product division has high knowledge about emerging technologies and their implications.” (.871)</td>
<td></td>
</tr>
<tr>
<td>Organizational Knowledge</td>
<td>[12, 20, 37, 66]</td>
<td>“We have a great deal of knowledge about the optimization of the innovation process.” (.872)</td>
<td></td>
</tr>
<tr>
<td>KMS Usage</td>
<td>[11, 42, 57]</td>
<td>“Comparatively well known.” (.634)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“The exchange with our most important #Exchange Partner# is very intensive.” (.830)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Compared to the industry average, we interact more frequently with our most important #Exchange Partner#.” (Scale: “Considerably less”, “less”, “rather less”, “just as much”, “rather more”, “more”, “considerably more”)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“I and my most important private contacts have interacted frequently regarding business-related topics within the last three years.” (Scale: “weekly”, “monthly”, “quarterly”, “annually”, “less frequently”, “never”) (.739)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Capital #Exchange Partner# (relational)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Our IT infrastructure supports an effective information exchange significantly.” (.830)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“All product divisions use a common knowledge management system.” (.896)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Social Capital #Exchange Partner# (cognitive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“We and our most important #Exchange Partner# always agree completely.” (.874)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“The communication with our most important #Exchange Partner# about content wise topics is outstandingly.” (.811)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Our most important #Exchange Partner# and we always have a common language to deal with technical issues.” (I and my most important private contacts tell similar anecdotes from daily business.) (.736)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“#Exchange Partner#: “customers”, “suppliers”, “R&D partners”, “communities/professional organizations”, “friendship communities”. In case of “friendship communities” all statements were formulated in Singular instead of Plural (“I” instead of “We”).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“In case of customers, the loading was only .681. In case suppliers, the loading was only .666. In case of communities/professional organizations, the loading was only .603.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“In case of communities/professional organizations, the loading was only .649.”</td>
<td></td>
</tr>
</tbody>
</table>

According to Carte and Russel [13] the delta of R2 in terms of the effect size (f2) is applied for interpreting the moderation’s effect size instead of the regression coefficients (g). For interpreting the regression coefficients (e) and (f) it has to be considered that these two represent “conditional” rather than “main” effects [24]. Since these two variables are standardized, the effect of the independent variable indicates the effect of this variable at the average level of the predictor variable and vice versa [24]. Because the focus of this study is on exploring the effect of KMS usage for managing organization...
acquired knowledge, only the direction, the ratio between as well as the level of significance are interpreted for these two coefficients but not their absolute amount [13].

In order to check for the degree of multicollinearity among the latent variables, the variance inflation factor (VIF) was calculated. For each regression analysis the VIF of each latent variable is below 3.33 [21] indicating the absence of multicollinearity.

Table 2. Results of the Linear Regressions: (e)/(f)/(g) = Coefficient of the Exchange Partner / Usage of KMS / Interaction Term (compare equation 1); (f²) = Effect Size of the Interaction Term (>.35=strong, >.15=medium, >.02=weak) [17] (*: p<=.01; *: p<=.05; #: p<=.1)

<table>
<thead>
<tr>
<th>Type of know.</th>
<th>Customer</th>
<th>Supplier</th>
<th>R&D Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>Market</td>
<td>216</td>
<td>227</td>
<td>224</td>
</tr>
<tr>
<td>Organizational</td>
<td>255</td>
<td>234</td>
<td>238</td>
</tr>
<tr>
<td>Process</td>
<td>194</td>
<td>229</td>
<td>162</td>
</tr>
<tr>
<td>Technological</td>
<td>263</td>
<td>179</td>
<td>076</td>
</tr>
</tbody>
</table>

Looking at the influence of exchange partners on the knowledge stock of a firm, I can conclude that all types of partners enhance the knowledge stock regarding all types of knowledge, excluding communities/professional organizations regarding product and friendship communities regarding organizational knowledge. Communities sometimes comprise competitors which hinders the exchange about products. Since organizational knowledge focuses on the innovation process which is quite unique for each firm it is difficult to share knowledge within the private environment.

The usage of a KMS is significantly positively related to the management of the knowledge stock of a firm, excluding the domain of product knowledge. Product knowledge comprises mostly knowledge about products of the competitors as well as about problems regarding the handling. Further, this kind of knowledge is predominantly not documented by using “classical” KMS rather it is documented by running CRM databases or by ERP systems in terms of the complaint management.

For managing acquired process knowledge from R&D partners as well as for technological knowledge from customers, the usage of a KMS shows a significant negative effect (f² are above .02). Further, for managing organizational and technological knowledge from R&D partners the usage of KMS seems to be obstructive (f² are nearby .02). In contrast the usage of KMS is beneficial for managing acquired market, organizational, and process knowledge from communities as well as for the management of organizational, process, and technological knowledge from friendship communities (f² are above or nearby .02). Regarding process knowledge acquired from communities the positive effect is even significant. In most of the other cases the usage of a KMS supports the management of acquired knowledge from external partners whereas this effect is not significant (f² are below .02) (e.g., customer and product knowledge) or the usage of KMS does not seem to matter for the management of acquired knowledge (f² is zero) (e.g., suppliers regarding market knowledge).
4.3 Validity of the Results

Capturing the dependent, independent, and the moderator variable from only a single respondent raises common method issues. For testing the presence of common method bias (CMB) two different approaches by Podsakoff et al. [58] and Lindell and Whitney [49] were applied. First, the dataset was analyzed regarding the existence of a single component which accounts for the major proportion of the variance by conducting the Harman single-factor test [58]. The largest identified component within the model accounts for 37.5% of the variance indicating that a single factor accounting for the majority of the variables’ variance does not exist. Second, theoretical unrelated marker variables [49] were included in the questionnaire. By calculating the mean of these variables a marker construct was built which was added in a further step to the hierarchical regression analyses. Running the 25 regressions again including the marker construct it can be scrutinized in detail whether CMB is a problem in the data [61]. The regression coefficients of the marker construct (not reported) demonstrated that only the domain of product knowledge is affected. Comparing the results of the regressions including the marker construct with the results given in Table 2 no fundamental structural differences in terms of regression coefficient’s strength and significance were identified underlining the validity of the results.

5 Discussion and Conclusion

The objective of the paper was to explore the differential effect of the usage of KMS at the firm level for managing acquired knowledge comprising different domains from various exchange partners for knowledge creation, respectively enhancement.

Before discussing results, limitations of this study should be forwarded to allow interpretation of results while considering these limitations. First, the data stems only from a single industry limiting the generalizability. It would be interesting to verify the results within another setting, especially within the service sector. Second, knowledge acquisition from external partner was only scrutinized from the perspective of SC. Further research should consider demographic differences within a firm’s network or the similarity between the exchanging organizations, e.g., in terms of their structures [44]. Also other organizational aspects that foster knowledge acquisition like the amount of absorptive capacity [71] should be taken into account. Third, for the management of acquired knowledge, only the usage of KMS is included as a moderator. Further research should also explore other knowledge management influence factors [see e.g. 35] and knowledge-processing activities within an organization as moderators for the management of acquired knowledge like, e.g., systems, coordination, and socialization capabilities as they are distinguished by van den Bosch et al. [69]. Additionally, other IT systems like project and resource management as well as cooperative work systems [57] should be considered beside KMS.

Results show that for managing acquired knowledge from external partners the usage of KMS has two faces. On the one hand, in most cases the usage of KMS indicates a positive effect which is not significant. At this point it has to be mentioned that it is difficult to detect moderation effects when using continuous moderator and inde-
dependent variables since the power of moderation analysis is particularly low [24]. Even if the requirement of reliability, as illustrated before, is fulfilled, effect sizes for moderations are generally small [24]. Furthermore, the median effect size (f^2) for categorical moderators is .002 [1]. On this basis, Kenny [40] postulates values of .005, .01, and .025 for small, medium, and large moderation effects instead of .02, .15, .35 as by Cohen [17]. Taking both aspects into account the latter thresholds have to be relativized. Under these circumstances the usage of KMS seems to be quite relevant for managing acquired knowledge from communities regarding market, organizational, and process knowledge as well as for the management of acquired organizational, process, and technological knowledge from friendship communities. Beside competitors as mentioned before, communities comprise mostly organizations which are very similar regarding their processes and organizational routines executed and which are often operating in the same markets. Hence, the management of acquired knowledge from them is simplified. The same accounts for managing acquired knowledge from friendship communities because of the overlapping interests among the members.

On the other hand, the usage of KMS for managing acquired organizational and process knowledge from R&D partners is not appropriate. Further, for acquired technological knowledge from customers and R&D partners the usage of KMS for management shows a negative effect. One possible explanation is that the acquired knowledge from R&D partners is highly specific and as the case may be tacit. This type of partner is predominantly contacted by an organization to solve specific problems of individual production process. Therefore, the documentation of this knowledge is very difficult. Organizational knowledge focuses on the unique and complex innovation process of a firm. Hence, R&D partners can contribute a lot whereas the usage of KMS for documenting the acquired knowledge is problematic due to the complexity and specificity of this knowledge. In this case a commonly used KMS of a firm does not possess the necessary function as it would be the case by using customized KMS for the R&D unit of an organization since R&D partners predominantly stay in contact only with this unit. Furthermore, joint development projects with R&D partners are often practiced, especially for experimental learning. Thus, a lot of knowledge can be transferred including technological knowledge which is tacit to a great extent. The negative effect of the usage of KMS for managing acquired technological knowledge from customers could be explained as follows. Customers are occasionally contacted for idea generation and pilot-testing. Hence, the acquired knowledge including technological aspects deals predominantly with issues regarding the products. Hence, as mentioned before, commonly used KMS seem to be inappropriate as this knowledge remains predominantly within the R&D unit. At this point further research is required to analyze the role of KMS for knowledge acquisition from R&D partners and customers in depth.

As an overall conclusion it can be summarized that a firm’s partner network is an important contributor for building or enhancing the knowledge stock. Additionally, for the management of this knowledge stock the usage of KMS plays a significant role whereas the application of such systems for managing acquired knowledge shows some limitations. From a research perspective this study extends previous works by differentiating various exchange partners regarding their effect on different
knowledge domains and the influence of KMS usage. From a practical perspective, the results provide guidelines for organizations to invest systematically into their network of exchange partners and into the usage of KMS. Table 3 summarizes the guidelines by building a priority queue over the different external partners according to their impact on the corresponding knowledge domain. Additionally, it is indicated for which combination of external partner and knowledge domain the usage of KMS for managing acquired knowledge is beneficially or detrimentally.

Table 3. Practical Implications

<table>
<thead>
<tr>
<th>Type of know.</th>
<th>Priority queue over external partners regarding their effect (bold=significant) on each knowledge domain ([i] = partner are of same importance) including the effect of the usage of KMS for each combination in round brackets (+/- = no/positive/negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>Customers(o) >> Suppliers(o); R&D Partners(o); Com.(+); Friendship Com.(o)</td>
</tr>
<tr>
<td>Organiz.</td>
<td>R&D Partners(-) >> Customers(o) >> (Com.(+); Suppliers(o)) >> Friendship Com.(+)</td>
</tr>
<tr>
<td>Product</td>
<td>[Customers(o); Suppliers(o)] >> (R&D Partners(o); Friendship Com.(o)) >> Com.(+)</td>
</tr>
<tr>
<td>Process</td>
<td>Customers(o) >> R&D Partners(-) >> Suppliers(o) >> [Friendship Com.(+); Com.(+)]</td>
</tr>
<tr>
<td>Technol.</td>
<td>Customers(-) >> R&D Partners(-) >> [Suppliers(o); Com.(+)] >> Friendship Com.(+)</td>
</tr>
</tbody>
</table>

References